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We propose a model for the formation of drying cracks in a viscoplastic material. In this model, we observe
that when an external force is applied to a viscoplastic material before drying, the material memorizes the
effect of the force as a plastic deformation. The formation of the drying cracks is influenced by this plastic
deformation. This outcome clarifies the result of recent experiments which demonstrated that a drying fracture
pattern on a powder-water mixture depends on the manner in which an external force is applied before drying.
We analytically express the position of the first crack as a function of the strength of an external force applied
before drying. From the expression, we predict that there exists a threshold on the strength of the force. When
the force applied is smaller than the threshold, the first crack is formed at the center of the mixture; however,
when the force applied exceeds the threshold, the position of the first crack deviates from the center. The extent
of the deviation increases as a linear function of the difference between the strength of the force and the
threshold.
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I. INTRODUCTION

Cracks are observed on various materials such as rocks,
tectonic plates, and paintings. These cracks are fascinating
and have been studied by many researchers. The study of
drying cracks in a powder-water mixture was also included
in these researches. In one example, it was noticed that when
a layer of a powder-water mixture is dried in a container, it
shrinks and cracks are formed on it �1�. The cracks extend
from the surface of the mixture to the bottom and propagate
horizontally along a line. As a result, a two-dimensional frac-
ture pattern is formed on the surface of the mixture.

When we gently pour a powder-water mixture into a con-
tainer and leave it undisturbed during the drying process, a
random, isotropic fracture pattern is formed. However, Na-
kahara and Matsuo reported that when an external force is
applied to the mixture before drying, the fracture pattern
changes depending on the manner in which the force is ap-
plied �2�. For example, when the mixture is vibrated in one
direction before drying, cracks that are perpendicular to the
direction of the vibration emerge first. Finally, a lamellar
fracture pattern is formed. It takes more than 3 days for the
cracks to be formed after the vibration. It is quite surprising
that the effect of applying the force remains for such a long
time.

The experimental result attained by Nakahara and Matsuo
represents that a fracture pattern is controlled by the memory
of an external force applied before drying. Similar memory
effects that a response can be controlled by the memory of an
operation have been observed in other materials, such as
sand piles �3�, microgel pastes �4�, and rubbers �5�. By re-
calling that these memory effects have been studied from a
rheological point of view, we conjecture that the rheological
property of a mixture plays an important role in the memory
effect on the formation of drying cracks.

Among the rheological properties of the mixture, the most
conspicuous one may be plasticity. Hence, we study the role
of plasticity in the memory effect on the formation of drying
cracks. First, in Sec. II, we propose a model of the formation
of drying cracks in a viscoplastic material. In Sec. III, we
find that a viscoplastic material memorizes the effect of an
external force before drying as a plastic deformation by cal-
culating the model numerically. By the influence of this plas-
tic deformation, when an external force is applied to the
material, a crack perpendicular to the force emerges earlier
than when no force is applied. Based on this result, we con-
jecture that the perpendicular cracks emerge first by a plastic
deformation. Furthermore, we express the position of the
first perpendicular crack in terms of measurable material
properties in Sec. IV. This result can be used to test our
conjecture that the memory effect is caused by a plastic de-
formation. Section V is devoted to a summary and discus-
sion. Technical details are summarized in the Appendix.

II. MODEL

We propose the model of a viscoplastic material in a simi-
lar way as that demonstrated by Ooshida and Sekimoto �6�.
We consider a viscoplastic material of thickness H and width
2L in a container, as shown in Fig. 1. The coordinate system
�x ,z� is assumed such that the center of the container is at
x=0 and the bottom is at z=0. For mathematical simplicity,
we restrict our attention to plane strain deformations of the
viscoplastic material and we consider only a displacement
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FIG. 1. The illustration of viscoplastic material in a

container.
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u�x ,z , t� in the x direction and a plastic strain s�x ,z , t�, which
express the occurrence of a plastic deformation. We assume
that the time evolutions of u�x ,z , t� and s�x ,z , t� are de-
scribed as

�
�u�x,z,t�

�t
=

��xx�x,z,t�
�x

+
��xz�x,z,t�

�z
+ ��t� , �1�

B
�s�x,z,t�

�t
= �0, ��xz� � �Y�t� ,

���xz� − �Y�t��
�xz

��xz�
, otherwise, � �2�

where � is a coefficient of a viscosity, ��t� is an external
force, �Y�t� is a yield stress, �xx�x ,z , t� is a normal stress,
�xz�x ,z , t� is a shear stress, and B is a coefficient which de-
termines the speed of the plastic strain. �xx�x ,z , t� and
�xz�x ,z , t� are determined by the constitutive equations

�xx�x,z,t� = �� + 2��� �u�x,z,t�
�x

+ c�t�	 , �3�

�xz�x,z,t� = �� �u�x,z,t�
�z

− s�x,z,t�	 , �4�

where � and � are Lame coefficients and c�t� is a reference
strain rate. An increase in the reference strain rate represents
an effect of shrinking by drying �7,8�.

We consider the case where the functional forms of ��t�,
�Y�t�, and c�t� are given as

��t� = 
�M sin��t/T1� , t � T1,

0, t 	 T1,
� �5�

�Y�t� = 
�Y0, t � T2,


 , t 	 T2,
� �6�

c�t� = 
 0, t � T3,

b�t − T3� , t 	 T3,
� �7�

where �M, �Y0, and b represent the maximum value of an
external force, the yield stress before drying, and the speed
of drying, respectively.

In order to specify the model completely, we assume the
boundary conditions. At the region where the material comes
into contact with the container, the displacement is set to
zero. In contrast, at the region where there is no contact
between the material and the container, the stresses applied
to the free surface become zero. Here, one peculiar phenom-
enon arises: when the material is dried, it peels off from the

walls of the container. This phenomenon implies that the
boundary conditions change when the peeling occurs. Hence,
we assume boundary conditions

u�±L,z,t� = 0,

u�x,0,t� = 0,

�xz�x,H,t� = 0, �8�

for 0� t�T2, and

�xx�±L,z,t� = 0,

u�x,0,t� = 0,

�xz�x,H,t� = 0, �9�

for t	T2, where we consider that the peeling occurs at
t=T2. In Table I, we summarize the functional forms of the
parameters and the boundary conditions at the walls of the
container when T1�T2�T3.

Finally, we assume the condition of a crack formation. To
the best of our knowledge, the condition has not yet been
completely understood; however, two conditions have been
used in previous works. These are the critical stress condition
and the Griffith criterion. Under the critical stress condition,
a crack is formed when the stress exceeds a material con-
stant. This has been used in several numerical models �7�
because of the technical advantage of the local condition. In
contrast, under the Griffith criterion, a crack is formed when
the energy released during the formation of a crack exceeds
the increase of the surface energy. This condition has been
used by Komatsu and Sasa in their theory �8�. Although we
cannot determine which condition is more efficient, we em-
ploy the critical stress condition for simplicity of treatment.
Concretely, we define an average normal stress at the posi-
tion x as

��xx�x,t�
 =
1

H
� dz�xx�x,z,t� . �10�

Then, the condition of a crack formation is given as

��xx�xc,tc�
 = �b → �xx�xc,z,t� = 0 for t 	 tc, �11�

where xc is the position of a crack and tc is the time when the
crack is formed. We only consider cracks that are perpen-
dicular to the x axis.

TABLE I. Boundary conditions �BC� and parameters.

t � c �Y BC at walls

Applying an external force 0� t�T1 �M sin��t /T1� 0 �Y0 u�±L ,z , t�=0

Relaxation T1� t�T2 0 0 �Y0 u�±L ,z , t�=0

T2� t�T3 0 0 
 �xx�±L ,z , t�=0

Drying T3� t 0 b�t−T3� 
 �xx�±L ,z , t�=0
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To summarize, our model consists of Eqs. �1� and �2� with
parameters given by Eqs. �5�–�7� under the boundary condi-
tions �8� and �9�, and the condition of a crack formation, Eq.
�11�.

III. A QUALITATIVE COMPREHENSION OF THE ORIGIN
OF THE MEMORY EFFECT

In order to understand how a viscoplastic material memo-
rizes the influence of an external force that is applied before
drying, we numerically calculate Eqs. �1� and �2� with the
control parameter �M. In this numerical calculation, the ini-
tial conditions are given as u�x ,z ,0�=s�x ,z ,0�=0 and the
parameter values are set as H=1.0, L=10.0, �=1.0, �=0.1,
�Y0=0.05, �b=0.01, �=1.0, B=1.0, T1=30, T2=60, T3=90,
and b=0.000 19. In the following we report all quantities in
reduced units—i.e., length in units of H, stress in units of �,
and time in units of ��H2 /��—and other quantities in units
of the combinations of these units.

When no external force is applied to the material before
drying �that is, �M =0�, stresses become zero at t=T3 �just
before starting drying process�. Even when an external force
is applied to a material, provided �M is not so large that the
shear stress exceeds the yield stress, the stresses remain zero
at t=T3. However, when �M is sufficiently large, the stresses
have a nonzero value at t=T3, by a plastic deformation.

As an example, we show the results in the case
�M =0.08. When an external force ��t� increases in time
from 0, the material displaces to the direction of x, as shown
in Fig. 2. Due to the influence of the boundary conditions
u�±L ,z , t�=0, the material is pulled in the left region
�x�0� and pushed in the right region �x	0�. When the
deformation becomes sufficiently large, the shear stress

�xz�x ,z , t� exceeds the yield stress �Y0. Then, a plastic defor-
mation occurs near the bottom �z=0�, as shown in Fig. 3.
Due to this plastic deformation, the material remains pulled
in the left region �x�0� and pushed in the right region
�x	0� even after an external force ��t� becomes 0. There-
fore, the normal stress �xx�x ,z ,T3� is positive in the left re-
gion �x�0� and negative in the right region �x	0�, as
shown in Fig. 4. In this manner, a material memorizes the
effect of the force as a plastic deformation when an external
force is applied to the material before drying.

Next, we investigate the influence of a plastic deformation
on the formation of drying cracks by comparing the time
evolutions of ��xx�x , t�
 after starting the drying process
�t�T3� in the cases �M =0 and �M =0.08, which are illus-
trated in Figs. 5 and 6. In the case �M =0, ��xx�x , t�
=0 just
before drying �t=T3�; however, in the case �M =0.08,
��xx�x , t�
 is positive in the left region �x�0� and negative in
the right region �x	0� by a plastic deformation. As the ma-
terial is dried, the average normal stress ��xx�x , t�
 increases
in a similar manner for both cases. However, until a crack is
formed, the maximum values of ��xx�x , t�
 in the case
�M =0.08 are larger than those in the case �M =0. Due to this
large stress, a crack is formed earlier in the case �M =0.08,
than in the case �M =0.

Here, we consider the correspondence between the results
of the viscoplastic model and the experiments. In the visco-
plastic model, we consider a crack that is perpendicular to an
external force applied before drying. Due to the influence of
a plastic deformation, the crack is formed earlier when an
external force is applied to the material than when no force is
applied. Therefore, we conjecture that in the experiments

FIG. 2. u�x ,z ,T1 /2� as a function of �x ,z� in the case
�M =0.08.

FIG. 3. s�x ,z ,T3� as a function of �x ,z� in the case �M =0.08.

FIG. 4. �xx�x ,z ,T3� as a function of �x ,z� in the case
�M =0.08.

FIG. 5. The average normal stress ��xx�x , t�
 in the case �M =0
as a function of x.
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too, the perpendicular crack emerges due to the influence of
a plastic deformation when an external force is applied to the
material.

IV. QUANTITATIVE PREDICTIONS

In the viscoplastic model, the position of the first perpen-
dicular crack deviates from the center of the material to the
opposite direction of an external force applied before drying
as shown in Fig. 6. We wish to analytically express the po-
sition of the first perpendicular crack xc as a function of the
maximum value �M of the external force. However, since it
is difficult to study the partial differential equations �1� and
�2�, we simplify the equations on some assumptions.

First, we assume that an external force ��t� and a refer-
ence strain rate c�t� vary more slowly than the relaxation of
a displacement u�x ,z , t� and a plastic strain s�x ,z , t�. Then, it
is sufficient to calculate the static solution of the equations,
given an external force ��t�, a yield stress �Y�t�, and a ref-
erence strain rate c�t�. Second, we discretize the partial de-
rivative of z as

�u�x,H,t�
�z

=
u�x,H,t� − u�x,0,t�

H
=

u�x,H,t�
H

, �12�

��z�x,H,t�
�z

=
�xz�x,H,t� − �xz�x,0,t�

H
=

− �xz�x,0,t�
H

,

�13�

where u�x ,0 , t�=0 and �xz�x ,H , t�=0 �see Eqs. �8� and �9��.
Based on these assumptions, the displacement at the surface
U�x , t�=u�x ,H , t�, the normal stress at the surface Txx�x , t�
=�xx�x ,H , t�, and the shear stress at the bottom Txz�x , t�
=�xz�x ,0 , t� are determined by the equations

�Txx�x,t�
�x

−
Txz�x,t�

H
+ ��t� = 0, �14�

Txx�x,t� = �� + 2��� �U�x,t�
�x

+ c�t�	 , �15�

Txz�x,t� = ��U�x,t�
H

− S�x,t�	 , �16�

where S�x , t� is a plastic strain at the surface �s�x ,H , t��. The
time evolution of S�x , t� is as follows: if

�Txz�x,t�� � �Y�t� , �17�

S�x , t� does not change in time. However, if

�Txz�x,t�� 	 �Y�t� , �18�

S�x , t� is determined by the condition

�Txz�x,t�� = �Y�t� , �19�

which yields

S�x,t� =
U�x,t�

H
±

�Y�t�
�

. �20�

Here, the sign depends on the sign of Txz�x , t�. By substitut-
ing Eqs. �15� and �16� into Eq. �14�, we obtain the equation
of U�x , t� as

�� + 2��
�2U

�x2 −
�

H2U +
�

H
S + ��t� = 0. �21�

The functional forms of ��t�, �Y�t�, and c�t� are given as
Eqs. �5�–�7�, respectively. From Eqs. �8� and �9�, the bound-
ary conditions are rewritten as

U�L,t� = U�− L,t� = 0 �22�

for 0� t�T2 and

Txx�L,t� = Txx�− L,t� = 0 �23�

for T2� t.
From Eq. �11�, the condition of a crack formation is re-

written as

Txx�xc,tc� = �b. �24�

Moreover, because Txx�x , tc� has a maximum value at x=xc,
the equation

�Txx�xc,tc�
�x

= 0 �25�

should be satisfied.
From these equations, xc can be calculated. The result is

summarized below �see the Appendix for details of the cal-
culation�. First, we denote the threshold value of the external
force by �Y0, which is derived as

�Y0 =
�Y0 cosh qL

H�cosh qL − 1�
, �26�

where

q =� �

�� + 2��H2 . �27�

Then, if �M ��Y0, the position of the first perpendicular
crack xc is expressed as

xc = 0. �28�

FIG. 6. The average normal stress ��xx�x , t�
 in the case
�M =0.08 as a function of x.
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In contrast, when �Y0��M ��Y1, xc is determined by

cosh qL = B�0,xc� +
�bqH

�Y0 − �MH
sinh qxc

−
D�L,xs�
sinh qL

�1 − cosh qxc cosh qL� , �29�

where �Y1 is defined as

�Y1 =
�Y0�2 cosh qL − B�L,xs��

cosh qL − B�L,xs�
. �30�

Here, B�x1 ,x2� and D�x1 ,x2� are defined as

B�x1,x2� = cosh q�x1 − x2� + qx2 sinh�x1 − x2� , �31�

D�x1,x2� = sinh q�x1 − x2� + qx2 cosh q�x1 − x2� . �32�

xs represents the region where a plastic deformation occurs
as −xs�x�xs, which is determined by

�MH + ��Y0 − �MH�B�L,xs� = 0. �33�

We further extract a simple expression of xc by focusing
on the region where �M is adjacent to �Y0. Assuming that

qxc � 1, �34�

qxs � 1, �35�

and expanding Eqs. �29� and �33� to the first order of xc and
to the second order of xs, we obtain

xc = −
�cosh qL − 1�2

q2�b cosh qL
��M − �Y0� . �36�

In the calculation of xc, we simplified the original partial
differential equations based on some assumptions. In order to
confirm the qualitative accuracy of Eqs. �28� and �36�, we
numerically calculate the solutions of xc for the original par-
tial differential equations. In Figs. 7 and 8, we show the
numerical solutions of xc for the case where the parameter
values are same as in Sec. III �parameter set A� and for the
case where the parameter values are set as H=1.0, L=15.0,
�=1.0, �=0.2, �Y0=0.03, �b=0.02, �=1.0, B=1.0,
T1=300, T2=600, T3=500, and b=0.000 005 �parameter set
B�. There exists a threshold value �Y0. xc remains zero when

the external force �M is smaller than the threshold value �Y0
for both of the parameter sets. When the external force �M is
larger than the threshold value �Y0, xc deviates from zero. In
Fig. 9, we show the numerical solution of xc as a function of
difference between the maximum value of an external force
�M and the threshold value �Y0 for parameter set A. This
figure clearly indicates xc deviates from zero as a linear func-
tion of the difference between �M and �Y0 when �M is adja-
cent to �Y0. These behaviors qualitatively agree with Eqs.
�28� and �36� though the values of �Y0 are different.

Based on these results, we expect that in experiments, too,
the relation between the position of the first crack and the
maximum value of an external force is expressed as Eqs.
�28� and �36�. The experimental confirmation of Eqs. �28�
and �36� supports our conjecture that the memory effect on
the formation of drying cracks arises from a plastic deforma-
tion of the material.

V. SUMMARY AND DISCUSSION

In this paper, we model the formation of drying cracks in
a viscoplastic material. In numerical experiments, we ob-
serve that when an external force is applied before drying, a
crack whose direction is perpendicular to the force emerges
earlier than when no force is applied. This phenomenon oc-
curs because of a plastic deformation. Based on this obser-
vation, we conjecture that a plastic deformation is the cause
of the memory effect on the formation of drying cracks. In
order to check this theory, we quantitatively predict the po-

FIG. 7. The position of the first perpendicular crack xc as a
function of the maximum value of an external force �M for param-
eter set A.

FIG. 8. The position of the first perpendicular crack xc as a
function of the maximum value of an external force �M for param-
eter set B.

FIG. 9. The position of the first perpendicular crack xc as a
function of difference between the maximum value of an external
force �M and the threshold value �Y0 for parameter set A.
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sition of the first perpendicular crack. If Eqs. �28� and �36�
are experimentally confirmed, it may be concluded that a
plastic deformation causes the memory effect on the forma-
tion of drying cracks.

Here, we remark on the neglect of some quantities in our
model. A displacement w in the z direction is not taken into
account in our model. Moreover, normal stresses �xx, �yy,
and �zz are not taken into account in the equation which
represents the occurrence of a plastic deformation—i.e., Eq.
�2�. The reason for neglecting w is that w plays little role in
the formation of the crack because a crack is caused by a
normal stress �xx and w hardly contributes to �xx. The reason
for neglecting �xx, �yy, and �zz is that we consider the situ-
ation where a plastic deformation occurs by a shear. To make
sure that the neglect of these quantities does not affect our
results, we simulated the model in which these quantities
were taken into account. As far as we checked, we obtained
qualitatively similar results with the model in present
paper—for example, with regard to space distributions of a
horizontal displacement u�x ,z , t�, stresses �xx�x ,z , t� and
�xz�x ,z , t� after applying an external force.

In addition, we remark on the the results for another
choice of the parameters and the expressions of ��t�, �Y�t�,
and c�t�. As far as we checked, we observe the same phe-
nomenon that the first perpendicular crack occurs earlier and
the position of the crack deviates from center for any choice
of the parameter as shown in Figs. 7 and 8. For any choice of
the expressions of ��t�, �Y�t�, and c�t�, the same phenomena
are observed. Hence, we expect that our results are robust for
the variation of the parameters and the expressions.

Recently, Nakahara and Matsuo measured the rheological
property of a powder-water mixture �9�. From this measure-
ment, they demonstrated that the mixture memorizes an ex-
ternal force before drying only when it behaves as a visco-
plastic material with a finite yield stress. Moreover, they
report that only when the strength of the force is larger than
a threshold does the mixture memorize the force. The rela-
tion between the memory of the force and a finite yield stress
supports our conjecture that a plastic deformation plays an
important role in the memory effect on the formation of dry-
ing cracks. Furthermore, the existence of the threshold coin-
cides with the result of our model.
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APPENDIX: THE ANALYTICAL SOLUTION OF THE
POSITION OF THE FIRST CRACK

In this appendix, we show the path to obtain Eqs. �28� and
�29�, which determine the position of the first perpendicular
crack xc. This appendix consists of two subsections. In the
first subsection, we calculate S�x ,T1�, and in the second sub-
section, we calculate Txx�x , t� �t	T3�. Substituting the ex-
pression of Txx�x , t� into Eqs. �24� and �25�, we obtain

Eqs. �28� and �29�. In these calculations, we assume that
T1�T2�T3 in order to simplify the calculations.

Calculation of S„x ,T1…

First, we evaluate the minimum external force �Y0, which
yields a plastic deformation. Assuming that a plastic defor-
mation does not occur �S�x , t�=0� and solving Eq. �21� under
the boundary condition �22�, we obtain

U�x,t� =
��t�H2

�
�1 −

cosh qx

cosh qL
	 , �A1�

where

q2 =
�

�� + 2��H2 . �A2�

By substituting Eq. �A1� into Eq. �16�, we obtain a shear
stress Txz�x , t� as

Txz�x,t� = ��t�H�1 −
cosh qx

cosh qL
	 . �A3�

The assumption that S�x , t�=0 is valid if the equation

Txz�x,t� � �Y0 �A4�

is satisfied. This condition is equivalent to

��t� � �Y0, �A5�

where

�Y0 =
�Y0 cosh qL

H�cosh qL − 1�
. �A6�

Hence, we find that if �M ��Y0,

S�x,T1� = 0. �A7�

If �M 	�Y0, a plastic deformation occurs. Then, assuming
that a plastic deformation occurs in the region −xs�x�xs,
we calculate S�x ,T1 /2�. From Eq. �20�, S�x , t� is given by

S�x,t� = �
0, x � − xs,

U

H
−

�Y0

�
, − xs � x � xs,

0, xs � x .
� �A8�

By substituting this into Eq. �21� and noting ��T1 /2�=�M,
we obtain the equations of U�x ,T1 /2� as

�
�� + 2��

�2U

�x2 −
�

H2U + �M = 0, x � − xs,

�� + 2��
�2U

�x2 −
�Y0

H
+ �M = 0, − xs � x � xs,

�� + 2��
�2U

�x2 −
�

H2U + �M = 0, xs � x .
�

�A9�

By solving these equations under the boundary conditions
�22� and under the matching conditions that U�x ,T1 /2�,
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Txx�x ,T1 /2�, and S�x ,T1 /2� be continuous at x= ±xs, we ob-
tain the expression of U�x ,T1 /2� and the equation to deter-
mine xs. The expression of U�x ,T1 /2� is

U�x,T1/2� =�
�MH2

�
+

AsH

�
B�x,− xs� , x � − xs,

AsH

2�
q2�x2 − xs

2� +
�Y0H

�
, − xs � x � xs,

�MH2

�
+

AsH

�
B�x,xs� , xs � x ,

�
�A10�

where

As = �Y0 − �MH �A11�

and

B�x1,x2� = cosh q�x1 − x2� + qx2 sinh�x1 − x2� . �A12�

The equation to determine xs is

�MH + AsB�L,xs� = 0. �A13�

Substituting Eq. �A10� into Eq. �A8�, we obtain S�x ,T1 /2� as

S�x,T1/2� = �
0, x � − xs,

As

2�
q2�x2 − xs

2� , − xs � x � xs,

0, xs � x .
�

�A14�

Finally, S�x ,T1� is calculated. First, we calculate U�x ,T1�
on the assumption that

S�x,T1� = S�x,T1/2� . �A15�

Substituting Eq. �A15� into Eq. �21� and noting ��t�=0, we
obtain the equation of U�x ,T1� as

�
�� + 2��

�2U

�x2 −
�

H2U = 0, x � − xs,

�� + 2��
�2U

�x2 −
�

H2U +
As

2H
q2�x2 − xs

2� = 0, − xs � x � xs,

�� + 2��
�2U

�x2 −
�

H2U = 0, xs � x .
� �A16�

By solving this equation under the boundary conditions and the matching conditions, we obtain U�x ,T1� as

U�x,T1� =�
AsH

�
�B�x,− xs� − B�L,xs�

cosh qx

cosh qL
	 , x � − xs,

AsH

�
�1 +

q2�x2 − xs
2�

2
− B�L,xs�

cosh qx

cosh qL
	 , − xs � x � xs,

AsH

�
�B�x,xs� − B�L,xs�

cosh qx

cosh qL
	 , xs � x .

� �A17�

Substituting this equation and Eq. �A15� into Eq. �16�, we get Txz�x ,T1� as

Txz�x,T1� =�
As�B�x,− xs� − B�L,xs�

cosh qx

cosh qL
	 , x � − xs,

As�1 − B�L,xs�
cosh qx

cosh qL
	 , − xs � x � xs,

As�B�x,xs� − B�L,xs�
cosh qx

cosh qL
	 , xs � x .

� �A18�
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The assumption that S�x ,T1�=S�x ,T1 /2� is valid when the
equation

�Txz�x,T1�� � �Y0 �A19�

is satisfied, because S�x ,T1�=S�x ,T1 /2� implies that a plastic
deformation does not occur for T1 /2� t�T1. This condition
is equivalent to

�M � �Y1, �A20�

where

�Y1 =
�Y0�2 cosh qL − B�L,xs��

cosh qL − B�L,xs�
. �A21�

Hence, if

�Y0 � �M � �Y1, �A22�

then S�x ,T1� is expressed by Eq. �A15�.

Calculation of Txx„x , t… for t	T3

In this subsection, we calculate Txx�x , t� for t	T3 in the
cases �M ��Y0 and �Y0��M ��Y1.

If �M ��Y0, then S�x ,T1�=0. Since �Y =
, S�x , t�=0 for
t	T3. Substituting S�x , t�=0 and ��t�=0 into Eq. �21�, we
obtain the equation of U�x , t� for t	T3 as

�� + 2��
�2U

�x2 −
�

H2U = 0. �A23�

By solving this equation under the boundary conditions �23�,
we obtain U�x , t� for t	T3 as

U�x,t� = −
c�t�sinh qx

q cosh qL
. �A24�

Substituting this into Eq. �15�, we get Txx�x , t� in the case
�M ��Y0 as

Txx�x,t� = �� + 2��c�t��1 −
cosh qx

cosh qL
	 . �A25�

If �Y0��M ��Y1, S�x ,T1� is expressed by Eq. �A15�.
Since �Y =
,

S�x,t� = S�x,T1� �A26�

for t	T3, where S�x ,T1� is expressed by Eq. �A15�. Substi-
tuting Eq. �A26� into Eq. �21� and noting ��t�=0, we obtain
the same equation of U�x , t� as Eq. �A16�. By solving this
equation under the boundary conditions �23� and the match-
ing conditions, we obtain U�x , t� for t	T3 as

U�x,t� =�
−

c�t�sinh qx

q cosh qL
+

AsH

�
�B�x,− xs� − D�L,xs�

cosh qx

sinh qL
	 , x � − xs,

−
c�t�sinh qx

q cosh qL
+

AsH

�
�1 +

q2�x2 − xs
2�

2
− D�L,xs�

cosh qx

sinh qL
	 , − xs � x � xs,

−
c�t�sinh qx

q cosh qL
+

AsH

�
�B�x,xs� − D�L,xs�

cosh qx

sinh qL
	 , xs � x ,

� �A27�

where

D�x1,x2� = sinh q�x1 − x2� + qx2 cosh q�x1 − x2� . �A28�

Substituting this into Eq. �15�, we get Txx�x , t� for t	T3 in the case �Y0��M ��Y1 as

Txx�x,t� =�
�� + 2��c�t��1 −

cosh qx

cosh qL
	 +

As

qH
�D�x,− xs� − D�L,xs�

sinh qx

sinh qL
	 , x � − xs,

�� + 2��c�t��1 −
cosh qx

cosh qL
	 +

As

qH
�qx − D�L,xs�

sinh qx

sinh qL
	 , − xs � x � xs,

�� + 2��c�t��1 −
cosh qx

cosh qL
	 +

As

qH
�D�x,xs� − D�L,xs�

sinh qx

sinh qL
	 , xs � x .

� �A29�
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